矩阵的行列式

作者:追风剑情 发布于:2018-8-1 21:40 分类:计算机图形学

在任意方阵中都存在一个标量,称作该方阵的行列式。

方阵M的行列式记作|M|或det M。非方阵矩阵的行列式是未定义的。nxn阶矩阵的行列式定义非常复杂。

2×2阶矩阵行列式的定义:

1111.png

主对角线各元素相乘减去反对角线各元素相乘

注意,在书写行列式时,两边用竖线将数字块围起来,省略方括号。

可以用类似下面的示意图来帮助记忆。

2222.png


3×3阶矩阵行列式的定义:

33333.png

可以用类似的示意图来帮助记忆。把矩阵M连写两遍,将主对角线上的元素和反对角线上的元素各自相乘,然后用各主对角线上元素积的和减去各反对角线上元素积的和。

6666.png

如果将3×3阶矩阵的行解释为3个向量,那么矩阵的行列式等于这些向量的所谓“三元组积”。

1111.png

余子式

假设矩阵M有r行,c列。记法M{ij}表示从M中除去第i行和第j列后剩下的矩阵。显然,该矩阵有r-1行,c-1列。矩阵M{ij}称作M的余子式

示例

2222.png

代数余子式

对方阵M,给定行、列元素的代数余子式等于相应余子式的有符号行列式。

3333.png

如上,用记法cij表示M的第i行,第j列元素的代数余子式。注意余子式是一个矩阵,而代数余子式是一个标量。代数余子式计算式中的项(-1)(i+j)有以棋盘形式使矩阵的代数余子式每隔一个为负的效果:

555.png

下面我们将用余子式和代数余子式来计算任意n维方阵的行列式。

n维方阵的行列式存在着多个相等的定义。我们可以用代数余子式来定义矩阵的行列式(这种定义是递归的,因为代数余子式本身的定义就用到了矩阵的行列式)。

首先,从矩阵中任意选择一行或一列,对该行或列中的每个元素,都乘以对应的代数余子式。这些乘积的和就是矩阵的行列式。例如,任意选择一行,如行i,行列式的计算过程如公式所示:

4444.png

示例,4×4矩阵的行列式, (选择第1行)

6666.png

综上,可导出4×4矩阵的行列式: 

777.png

如果选择的是第1列: (略)

高阶行列式计算的复杂性是呈指数递增的。幸运的是,有一种称作"主元选择"的计算方法,它不影响行列式的值,但它能使特定行或列中除了一个元素(主元)外其他元素全为零。这样仅一个代数余子式需要计算。

行列式的一些重要性质:

  • 矩阵积的行列式等于矩阵行列式的积:|AB|=|A||B|
  • 这可以扩展到多个矩阵的情况:
  • 888.png
  • 矩阵转置的行列式等于原矩阵的行列式:|MT|=|M|T
  • 如果矩阵的任意行或列全为零,那么它的行列式等于零
  • 交换矩阵的任意两行或两列,行列式变负
  • 任意行或列的非零积加到另一行或列上不会改变行列式的值


几何解释

      矩阵的行列式有着非常有趣的几何解释。2D中,行列式等于以基向量为两边的平行四边形的有符号面积。有符号面积是指平行四边形相对原来的方位“翻转”,那么面积变负。

22222.png

      3D中,行列式等于以变换后的基向量为三边的平行六面体的有符号体积。3D中,如果变换使得平行六面体“由里向外”翻转,则行列式变负。

      行列式和矩阵变换导致的尺寸改变相关。其中行列式的绝对值和面积(2D)、体积(3D)的改变相关。行列式的符号说明了变换矩阵是否包含镜象或投影。

      矩阵的行列式还能对矩阵所代表的变换进行分类。如果矩阵行列式为零,那么该矩阵包含投影。如果矩阵行列式为负,那么该矩阵包含镜象。

标签: 计算机图形学

Powered by emlog  蜀ICP备18021003号   sitemap

川公网安备 51019002001593号