判断点是否在扇形内

作者:追风剑情 发布于:2018-11-3 12:43 分类:Algorithms

设向量v1=FA,向量v2=FB,向量p=FP,向量c=FC 向量的定比分公式: 用α表示(1-t),β表示t,定比分公式可转换为: (α≥0且β≥0且α+β=1) 当α与β满足上面的条件时,向量p就是向量a与向量b的内分点。当α+β不等于1,而是等于常数d时,等式可变形为: 其中α‘+β’=1,向量α‘...

阅读全文>>

标签: Algorithms

评论(0) 浏览(6957)

《程序员思维修炼》读后感

作者:追风剑情 发布于:2018-10-27 12:18 分类:读书笔记

隐喻是左右脑交换信息处理的桥梁 右脑得出的结论比较粗略需要左脑进一步论证其正确性 当集中注意力思考时右脑将停止工作,当撤销注意力处于一种轻松自然状态时右脑会自动工作

阅读全文>>

评论(0) 浏览(4489)

追赶法求解方程组

作者:追风剑情 发布于:2018-10-26 22:27 分类:Algorithms

示例 using System; namespace ConsoleApp2 { class Program { static void Main(string[] args) { //测试数据 Console.WriteLine(@"求解方程组: ...

阅读全文>>

标签: Algorithms

评论(0) 浏览(5212)

快速排序(Java版)

作者:追风剑情 发布于:2018-10-20 12:25 分类:Algorithms

public class QuickSortTest{ public static void main(String[] args){ int arr[] = {3, 1, 5, 4, 2, 6}; System.out.println("原数据:"); printArr(arr); System.out.println("快速排序过程:"); q...

阅读全文>>

标签: Algorithms

评论(0) 浏览(3442)

克洛脱(Crout)LU分解——C#实现

作者:追风剑情 发布于:2018-10-14 15:10 分类:Algorithms

克洛脱(Crout)LU分解原理参见 克洛脱(Crout)矩阵分解——LU分解 using System; using System.Text; namespace ConsoleApp1 { class Program { static void Main(string[] args) { ...

阅读全文>>

标签: Algorithms

评论(0) 浏览(5093)

给材质加复选框[Toggle()]

作者:追风剑情 发布于:2018-9-24 11:07 分类:Shader

示例Shader // Upgrade NOTE: upgraded instancing buffer 'MyProperties' to new syntax. Shader "Unlit/Sphere1" { Properties { _Color("Color", Color) = (1,1,1,1) //材质上加个复选框 [Toggl...

阅读全文>>

标签: Shader

评论(0) 浏览(4804)

GPU实例化技术(GPU Instancing)

作者:追风剑情 发布于:2018-9-22 16:52 分类:Shader

参考文章 http://www.manew.com/thread-50914-1-1.html [官方文档] GPU实例化 当场景中有大量使用相同材质和网格的物体时,通过GPU Instancing可以大幅降低Draw Call数量。 示例:创建200个小球,看看开启和不开启GPU Instancing时的draw call数量 下面是一个支持G...

阅读全文>>

标签: Shader

评论(0) 浏览(12099)

MaterialPropertyBlock

作者:追风剑情 发布于:2018-9-21 16:19 分类:Shader

一、创建测试shader Shader "Unlit/Sphere" { Properties { _MainTex ("Texture", 2D) = "white" {} _Color("Color", Color) = (1,1,1,1) } SubShader { Tags { "RenderType"="Opaque" } LOD ...

阅读全文>>

标签: Shader

评论(0) 浏览(4599)

Linear&Camma Color Space

作者:追风剑情 发布于:2018-9-20 19:48 分类:Unity3d

一、在Player Settings中设置Color Space为Linear 二、修改纹理的sRGB(Color Texture)选项 三、预览,左图为未勾选sRGB,右图为勾选了sRGB 结论 在Linear Color Space中 勾选了sRGB显示正常 不勾选sRGB显示偏亮 在Camma C...

阅读全文>>

标签: Unity3d

评论(0) 浏览(4358)

判断圆与线段相交

作者:追风剑情 发布于:2018-9-15 12:31 分类:Algorithms

求圆心坐标C(xc, yc),半径为rc的圆,与起点为F(xF, yF)、终点为F+v1的线段的交点。(注意, 这里的F、v1是向量) 圆的方程为 用向量表示线段为 (0<=t<=1) 可将其分解为方程组 将线段等式代入圆的方程 整理,得 ...

阅读全文>>

标签: Algorithms

评论(0) 浏览(6073)

微分

作者:追风剑情 发布于:2018-9-8 22:03 分类:Algorithms

常用微分公式 加法、减法 常数倍 三角函数 推导过程用到了积化和差公式,参见: 三角函数 幂函数 合成函数的微分  (对外层函数的微分乘以对内层函数的微分) 例如,求sin(wt)对t的微分 ...

阅读全文>>

标签: Algorithms

评论(0) 浏览(7117)

正交矩阵

作者:追风剑情 发布于:2018-9-5 20:43 分类:计算机图形学

一、运算法则 若方阵M是正交的,则当且仅当M与它转置MT的乘积等于单位矩阵。 因为矩阵乘以它的逆等于单位矩阵:MMT=I。所以,如果一个矩阵是正交的,那么它的转置等于它的逆。 这是一条非常有用的性质,因为在实际应用中经常需要计算矩阵的逆,而3D图形计算中正交矩阵出现得又是如此频繁(旋转和镜像矩阵都是正交的)。如果知道矩阵是正交的...

阅读全文>>

标签: 计算机图形学

评论(0) 浏览(16552)

《游戏策划与设计》读后感

作者:追风剑情 发布于:2018-8-31 22:42 分类:读书笔记

游戏设计元素 核心体验分类 求生、建造、破坏、收集、追逐与躲避、竞速、地盘保护与争夺、交易与合作、故事与情感代入、未知&预测&探索、能力挑战 沉浸分类 快速反应沉浸、策略思考沉浸、听视觉冲击沉浸、叙述性沉浸 障碍(挑战)分类 马斯洛的“需求层次论”

阅读全文>>

评论(0) 浏览(3955)

Matlib——图像噪声分类

作者:追风剑情 发布于:2018-8-26 21:37 分类:Matlab

示例 %读入图像 M = imread('noise.png'); %生成灰度图 I = rgb2gray(M); %显示灰度图 figure, imshow(I), title('灰度图'); %高斯白噪声 J1 = imnoise(I, 'gaussian'); figure, imshow(J1), title('高斯白噪声'); %与图像灰度值有关的零均值高斯白噪声 %J2 = im...

阅读全文>>

标签: Matlab

评论(0) 浏览(4993)

反转位元

作者:追风剑情 发布于:2018-8-24 21:30 分类:Algorithms

示例 using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace Example1 { class Program { static void ...

阅读全文>>

标签: Algorithms

评论(0) 浏览(4025)

矩阵的逆

作者:追风剑情 发布于:2018-8-19 12:55 分类:计算机图形学

求逆运算只能用于方阵。        并非所有矩阵都有逆,一个明显的例子是若矩阵的某一行或列上的元素都为零,用任何矩阵乘以该矩阵,结果都是一个零矩阵。如果一个矩阵有逆矩阵,那么称它为可逆的或非奇异的。如果一个矩阵没有逆矩阵,则称它为不可逆的可奇异矩阵。奇异矩阵的行列式为零,非奇矩阵的行列式不为零,所以检测行列式的值是判断矩阵是否可...

阅读全文>>

标签: 计算机图形学

评论(0) 浏览(5980)

Matlib——二维傅里叶变换

作者:追风剑情 发布于:2018-8-18 11:15 分类:Matlab

在线对图像做傅里叶变换 https://sci2fig.herokuapp.com/fourier 尺寸为M×N的离散函数f(x,y)的二维离散傅里叶变换(Discrete Fourier Transform, DFT)如下 f(x,y)可以通过对F(u,v)求傅里叶逆变换获得,其表达式如下 式中,x=0,...

阅读全文>>

标签: Matlab

评论(0) 浏览(4446)

Matlab——开发环境

作者:追风剑情 发布于:2018-8-17 23:52 分类:Matlab

一、下载Matlab http://dl.pconline.com.cn/download/360588.html 二、把下载好的文件放到英文目录下(必须,否则会安装失败) 三、不需要解压,只接双击Matlab7.iso里的setup.exe进行安装 Matlab 7 (R14) 注册码1 14-13299-56369-16...

阅读全文>>

标签: Matlab

评论(0) 浏览(3624)

《游戏化实战》读后感

作者:追风剑情 发布于:2018-8-12 11:54 分类:读书笔记

八角行为分析法框架 八大核心驱动力 史诗意义与使命感 进步与成就感 创意授权与反馈 所有权与拥有感 社交影响与关联性 稀缺性与渴望 未知性与好奇心 亏损与逃避心 产品的四个阶段 发现阶段:用...

阅读全文>>

评论(0) 浏览(5766)

变换的组合

作者:追风剑情 发布于:2018-8-11 12:47 分类:计算机图形学

因为矩阵乘法满足结合律,可以先把所有变换矩阵组合起来,这样向量只需乘以一个最终变换矩阵。 矩阵组合从代数角度看是利用了矩阵乘法的结合律。 从几何角度看,矩阵的行向量就是变换后的基向量。这在多个变换的情况下也是成立的。参见 矩阵几何解释 考虑矩阵乘法AB,结果中的每一行都是A中相应行与矩阵B相乘的结果。换言之,设a1,a2,a3为A的...

阅读全文>>

评论(0) 浏览(3826)

矩阵的转置(一)

作者:追风剑情 发布于:2018-8-10 22:04 分类:计算机图形学

考虑一个r×c矩阵M。M的转置记作MT,是一个c×r矩阵,它的列由M的行组成。可以从另一方面理解,MijT=Mji,即沿着矩阵的对角线翻折。 对于向量来说,转置将使行向量变成列向量,使列向量成为行向量。 转置记法经常用于在书面表达中书写列向量,如[1,2,3]T。 有两条非常简单但很重要的关于矩阵转置的引理: ...

阅读全文>>

标签: 计算机图形学

评论(0) 浏览(4295)

用AssetDatabase.LoadAllAssetsAtPath()获取FBX文件里的所有资源

作者:追风剑情 发布于:2018-8-8 22:07 分类:Unity3d

FBX文件包含了很多资源, 如:Animator(动画)、SkinnedMeshRenderer(蒙皮网格)、MeshFilter(模型网格)、骨骼、...... 示例 [MenuItem("Assets/Check FBX")] static void CheckFBX() { string asset_path = "Asse...

阅读全文>>

标签: Unity3d

评论(0) 浏览(7821)

Powered by emlog  蜀ICP备18021003号-1   sitemap

川公网安备 51019002001593号