辗转相除的数学原理是朴素的欧几里得定理:
GCD(a, b) = GCD(b, a mod b) (a mod b表示a除以b的余数)
代码实现
using System;
using System.Collections.Generic;
using System.Text;
namespace GCDTest
{
class Program
{
static void Main(string[] args)
{
Console.WriteLine("{0}和{1}的最大公约数={2}", 28, 14, EuclidGcd(28, 14));
Console.WriteLine("{0}和{1}的最大公约数={2}", 58, 14, EuclidGcd(58, 14));
Console.WriteLine("{0}和{1}的最大公约数={2}", 99, 21, EuclidGcd(99, 21));
Console.Read();
}
/// <summary>
/// 辗转相除法求a和b的最大公约数
/// </summary>
public static int EuclidGcd(int a, int b)
{
if (b > a)
{
int tmp = a;
a = b;
b = tmp;
}
while (b != 0)
{
int tmp_b = b;
b = a % b;
a = tmp_b;
}
return a;
}
}
}
运行结果