示例:通过编辑顶点自定义Mesh形状
CustomMesh.cs
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
/// <summary>
/// 自定义Mesh
/// </summary>
public class CustomMesh : MonoBehaviour
{
public MeshFilter meshFilter;
public Transform[] vertexes;
private List<Vector3> vertices;//Mesh顶点
private List<int> triangles; //Mesh三角形
private Mesh mesh = null;
private List<Vector3> points;
//映射: 顶点->顶点序号
private Dictionary<Vector3, int> indexDic = new Dictionary<Vector3, int>();
public bool updateMesh = true;
private void Update()
{
if (!updateMesh)
return;
updateMesh = false;
GenerateMesh();
}
private void GenerateMesh()
{
if (vertexes.Length <= 3)
return;
if (vertices == null)
vertices = new List<Vector3>();
vertices.Clear();
if (triangles == null)
triangles = new List<int>();
triangles.Clear();
if (points == null)
points = new List<Vector3>();
points.Clear();
Bounds bounds = new Bounds();
int i = 0;
int n = vertexes.Length; //多边形顶点数
for (i = 0; i < n; i++)
{
Vector3 localPosition = vertexes[i].localPosition;
points.Add(localPosition);
vertices.Add(localPosition);
indexDic[localPosition] = i;
bounds.Encapsulate(localPosition);
}
//对简单多边形进行三角剖分
i = 0;
Vector3 Q0 = points[i];
Vector3 Q1, Q2;
while(n > 3)
{
Q1 = points[i + 1];
Q2 = points[i + 2];
Debug.LogFormat("Test({0}, {1}, {2})", indexDic[Q0], indexDic[Q1], indexDic[Q2]);
if (Test(Q0, Q1, Q2))
{
//输出三角形Q0Q1Q2
triangles.Add(indexDic[Q0]);
triangles.Add(indexDic[Q1]);
triangles.Add(indexDic[Q2]);
Debug.LogFormat("输出三角形{0},{1},{2}", indexDic[Q0], indexDic[Q1], indexDic[Q2]);
//删除顶点Q1
DeletePoint(Q1);
n--;
}
else
{
Q0 = Q1;
i++;
}
if (i + 2 >= points.Count)
break;
}
//输出最后剩下的一个三角形
triangles.Add(indexDic[points[0]]);
triangles.Add(indexDic[points[1]]);
triangles.Add(indexDic[points[2]]);
Debug.LogFormat("输出三角形{0},{1},{2}", indexDic[points[0]], indexDic[points[1]], indexDic[points[2]]);
//创建Mesh
if (mesh == null)
mesh = new Mesh();
List<Vector2> uv = new List<Vector2>();
for (i = 0; i < vertices.Count; i++)
{
float u = (vertices[i].x - bounds.min.x) / bounds.size.x;
float v = (vertices[i].y - bounds.min.y) / bounds.size.y;
uv.Add(new Vector2(u, v));
}
mesh.vertices = vertices.ToArray();
mesh.triangles = triangles.ToArray();
mesh.uv = uv.ToArray();
if (meshFilter != null)
meshFilter.sharedMesh = mesh;
}
private void DeletePoint(Vector3 P)
{
for (int i = 0; i < points.Count; i++)
{
Vector3 p = points[i];
if (p == P)
{
points.RemoveAt(i);
break;
}
}
}
/// <summary>
/// 检查Q0Q2是否为完全在原多边形内部的对角线(true: 是)
/// </summary>
/// <param name="Q0">三角形顶点</param>
/// <param name="Q1">三角形顶点</param>
/// <param name="Q2">三角形顶点</param>
/// <returns></returns>
private bool Test(Vector3 Q0, Vector3 Q1, Vector3 Q2)
{
Vector3 P = Q1 - Q0;
Vector3 Q = Q2 - Q0;
bool zEqual = (Q0.z == Q1.z && Q1.z == Q2.z);
//这里规定顶点都按顺时针方向排列(即,向右转向)
//判断向量转向,排除共线或凹角的情况
if (zEqual && CrossProduct(P, Q) >= 0)
{
return false;//左转或共线
}
//是否存在多边形的其他顶点在三角形内部
for (int i=0; i<points.Count; i++)
{
Vector3 p = points[i];
if (p == Q0 || p == Q1 | p == Q2)
continue;
//考虑第三维度
if (p.z != Q0.z || p.z != Q1.z || p.z != Q2.z)
continue;
if (IsPointInTriangle(p, Q0, Q1, Q2))
return false;//存在多边形的其他顶点在三角形内部
}
return true;
}
/**
* 点积(内积)
* (P, Q)表示向量P和Q的夹角。
*
* 如果P和Q不共线,则:
* P·Q > 0,则P和Q的夹角是钝角(大于90度)
* P·Q < 0,则P和Q的夹角是锐角(小于90度)
* P·Q = 0,则P和Q的夹角是90度
*/
private static float DotProduct(Vector3 P, Vector3 Q)
{
return P.x * Q.x + P.y * Q.y + P.z * Q.z;
}
// 判断P是否在三角形Q0Q1Q2内
public static bool IsPointInTriangle(Vector3 P, Vector3 P0, Vector3 P1, Vector3 P2)
{
float s012 = CalculateTriangleArea(P0, P1, P2);
double s01p = CalculateTriangleArea(P0, P1, P);
double s02p = CalculateTriangleArea(P0, P2, P);
double s12p = CalculateTriangleArea(P1, P2, P);
return s01p + s02p + s12p <= s012;
}
// 计算三角形面积
public static float CalculateTriangleArea(Vector3 P0, Vector3 P1, Vector3 P2)
{
float s = CrossProduct(P0 - P1, P2 - P1) / 2;
return s;
}
/**
* 叉积(外积)
* P×Q = -(Q×P)
*
* 几何意义:
* P×Q为所构成的平行四边行的面积。
*
* 方向:
* P×Q的方向是垂直于P和Q所在的平面(右手坐标系)
*
* 性质:
* 判断两矢量相互之间的位置关系
* P×Q > 0,则Q在P的逆时针方向
* P×Q < 0,则Q在P的顺时针方向
* P×Q = 0,则Q与P共线
*/
private static float CrossProduct(Vector3 P, Vector3 Q)
{
return (P.y*Q.z - Q.y*P.z) + (P.z*Q.x - Q.z*P.x) + (P.x*Q.y - Q.x*P.y);
}
}